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Abstract. This paper discusses the effect of a low-frequency electric field on Anderson 
localized electrons, and a new mechanism for dissipative absorption of energy and spatial 
diffusion of the electrons is introduced. The mechanism is based on an application of the 
quantum adiabatic theorem: varying the electric field causes widely separated states to 
become degenerate, and if the field is varied sufficiently slowly the electron hops between 
the degenerate states. This effect becomes the dominant mechanism for dissipation if the 
electric field exceeds a threshold value, which decreases a6 the frequency tends to zero. 
The experimental observability of the effect is discussed. 

1. Introduction 

It is well known that electrons in a disorc;ered solid, treated in the independent-electron 
approximation, can have spatially localized eigenstates, and that if the eigenstates at 
the Fermi energy are localized the zero-temperature DC conductivity is zero (Ishii 
1973). This paper considers in detail the effect of an AC electric field on this system. 
This problem has previously been investigated by Mott (1970), who computed the AC 

conductivity Z ( w )  using the Kubo-Greenwood formula (Kubo 1956, Greenwood 1958), 
a perturbative method, and found that in d dimensions the leading-order behaviour 
of Z ( w )  is proportional to w211nol in the limit where the frequency w + 0 .  The 
principal new result in this paper comes from considering a small but finite electric 
field, % ( t )  = 8,, cos(wr), and applying the quantum adiabatic theorem. This leads to a 
new mechanism for the transport of electrons, which becomes dominant if we consider 
the limit w + O  with the amplitude go held fixed. The paper also comments on the 
relationship of these results to the earlier perturbative analysis, and to other recent 
studies on irreversible processes resulting from non-adiabatic transitions. 

Varying the electric field 8 perturbs the energy levels of the electron eigenstates, 
and causes a pair of states I&), localized at  two widely separated positions to 
become nearly degenerate. In the neighbourhood of the near-degeneracy the exact 
eigenstates I$,), If the energy levels of 
these two states are plotted as a function of 8 the curves do not cross: this is illustrated 
in figure 1. The lower eigenstate I$,), initially very close to I$,), is very nearly equal 
to after the avoided crossing: the identity of the upper state is similarly exchanged. 
If 8( r )  varies sufficiently slowly, the quantum adiabatic theorem (Bohm 1951) tells us 
that an electron in the lower eigenstate remains in this state, resulting in a transfer 
of the electron over a large distance, from state 14,) to state I&). This mechanism is 
discussed in greater detail in the next section, and it is shown that it leads to a spatial 
diffusion of the electrons under the influence of a sufficiently strong AC electric field. 
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Figure I .  (a) An avoided crossing between two widely separated states, and ( b )  the 
corresponding wave function for the lower eigenrtate at three values of the electric field. 
I f  the electric field 8( 1 )  varies sufficiently slowly, the electron is adiabatically transponed 
to a widely Separated state. 

In section 3 it is shown that this adiabatic transport effect also leads to the dissipation 
(i.e. effectively irreversible absorption) of energy by the electron gas, and the rate of 
dissipation is calculated. Section 4 discusses the perturbative calculation of the conduc- 
tivity, and it is argued that, although this result is formally correct, the energy absorption 
in the perturbative regime saturates very quickly, and that the AC conductivity may be 
very difficult to observe. Section 5 discusses the potential experimental observability 
of the adiabatic transport effect, and its relationship to some other problems involving 
non-adiabatic transitions and the response of systems to periodic perturbations. 

2. The adiabatic transport mechanism 

The model system considered in this paper is as follows. The electrons are treated as 
independent, spinless fermions, and the electric field as a purely classical time-depen- 
dent perturbation of the one-electron Hamiltonian, of the form eg( i)P The one-electron 
Hamiltonian is therefore 

The unperturbed Hamiltonian A,, is a model for a disordered solid, with Anderson 
localized states at the Fermi energy: as an example, Ho could be an Anderson model 
Hamiltonian in d dimensions with lattice constant unity, and 2 the index of the lattice 
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sites along one of the principal axes of the lattice. The eigenstates of fi0 have a density 
of states per unit volume p, and a localization length f at the Fermi energy. 

Now the adiabatic transport effect will be described in greater detail. Consider two 
states I+,), with nearly equal energies E , ( % )  and E2(%),  which are separated by 
a distance L which is much greater than 5. The effect of the perturbation can be 
analysed using degenerate perturbation theory: the state of the perturbed system can 
be approximated by the linear combination 

i$)= a,i+J+a2iOd (2.2) 
where ( a , ,  a2)  is an eigenvector of the 2 x 2 matrix formed by the matrix elements of 
H (  %) in the I+,), subspace. In the neighbourhood of the point %* where the states 
are closest to degeneracy, this matrix can be approximated as follows: 

1. (23) [Eo+ ( % - I*) V ,  I 

L H ,  2 Ea+ (8 - %*) V2,J 

The diagonal matrix elements VI, and V2, are approximately equal to ex, and exi 
respectively, where x, and x2 are the x-coordinates of the positions about which the 
states and are localized. The matrix element H,, is much smaller because of 
the very small overlap of the states 14,) and The matrix element H,, is of order 
of magnitude 1. exp(-L/(), where 1, = (.pC”)-‘ is the mean separation of energy levels 
in a block of size 6. The energy levels are given by the eigenvalues of (2.3), 

E(%)=Eo*f[(Vll  - V22)2(%- %*)2+4H:2]”2 (2.4) 
which approach each other to within a separation A E  =2H,, at their point of closest 
approach, %* (see figure 1). This close approach of eigenvalues is called an avoided 
crossing. Notice that when the parameter % passes through an avoided crossing, the 
coefficients of the eigenvector with the lowest eigenvalue change from being approxi- 
mately (1,O) to approximately (0 , l )  (or vice versa). The locations in space of the lower 
and upper states therefore move through a distance L as we pass through an avoided 
crossing, and the identities of the states are exchanged. Now we recall the quantum 
adiabatic theorem (see Bohm 1951), which states that if we start in  the nth eigenstate 
of the system, and the Hamiltonian is changed sufficiently slowly, then the system 
remains in the nth eigenstate of the instantaneous Hamiltonian. By varying the electric 
field sufficiently slowly, we can therefore make an electron hop a distance L, which 
is much greater than the localization length. If the rate of change of the parameter 8 
is too fast, there is a significant probability to make a transition from one state to the 
other: these transitions are called Landau-Zener transitions, and in the present context 
making the non-adiabatic transition corresponds to leaving the electron in its original 
location. 

The probability for making a non-adiabatic transition in a simple two-level system 
such as that described above is given by 

P,=exp(-?rAE2/2Ah@ (2.5) 
where D E  is the closest approach of the eigenvalues, A is the asymptotic difference 

as it passes through the avoided crossing (Zener 1932). In order to understand the 
role of these non-adiabatic transitions in  producing diffusion of the electrons, it is 
necessary to consider the statistical distribution of the parameters A E  and A appearing 
in (2.5). 

in dE/dP for the two energy h e i s ,  arid I is ihe raie of change or’ ihe patameier i: 
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Consider the electronic states that would exist in a finite-sized block of material, 
with size Lo >> 5. The dependence of the energy levels on the electric field 8 is shown 
schematically in figure 2: there are many avoided crossings, with a wide spectrum of 
possible gap sizes, but few of the gaps will be smaller than 

AE = Io exp( - Lo/() r,= (p6d) -1 .  (2 .6)  
Equation (2 .5 )  shows that the effects of varying 8( t )  are reversible (i.e. the transition 

(2.7) 
This estimate uses the fact that the difference A between the derivatives d E / d 8  for 
the two states is approximately eL, where e is the electron charge and L the distance 
between the two states. Although the electrons can move distances of order Lo, these 
processes are reversible and do not result in any diffusion of the electrons, provided 
(2.7) is satisfied. 

Now consider what happens when this finite block of material is incorporated into 
an infinite lattice. All the states except those within a distance 5 of the edges of the 
block remain almost the same, except when, at a particular value of %, they become 
degenerate with another state somewhere else in the lattice. Consider the crossings of 
E given s!ate with !he stites z! dis?anc.cs be!ween L. and L + 6 L .  The TE?P E! which 
crossings with such states occur is 

..-,.t--I.:,:*.. D -n\ __^.I :A"A 
p " u " " " " 1 L ~  r,-",, p u " , " G "  

A E * >> eL,h@. 

where p is the density of states per unit volume, and the gap sizes of the avoided 
crossings are in the range SAE given by differentiating the relationship (2.6): 

SAE=-AE/fSL. (2.9) 
The rate of crossing of avoided crossings with gaps in the range AE to AE + 6AE is 
therefore 

d N  SAE 
- = peg@" - 
d l  AE . 

(2.10) 

Figure 2. The energy levels of the electron stales in a finile-sized sample exhibit many 
avoided crossings as the electric field s ( l )  varies. 



Adiabatic transport of localized electrons 2619 

Only the avoided crossings with gaps which satisfy 

AE =(eLfig)"' (2.11) 

make any significant contribution to the diffusion of the electrons: larger gap sizes 
result in the adiabatic changes being perfectly reversible, and for smaller gap sizes the 
non-adiabatic transitions which occur do  not result in any motion of the electrons. 
The range SAE of gap sizes contributing to the diffusive motion therefore satisfies 

S A E / A E = ( l )  (2.12) 

and the corresponding hopping length L is given by combining (2.11) and (2.6): 

L =  (F(e%fi ( /  I : )  (2.13) 

where F ( x )  is a solution of the equation 

F = -ln(xF). 

Note that the function F(x)  is similar to -In(x). 
The diffusion constant for the electrons is 

d N  
dt  

DE--' 

(2.14) 

(2.15) 

where L is the dominant hopping distance, given by (2.13). Substituting (2.12), (2.13) 
into (2.10) and (2.15), gives the following estimate for the diffusion constant: 

D = K,peg,c"'[ F (  e%@/ l ~ ] d "  (2.16) 

in the limit w + 0, where K ,  is a dimensionless constant. This result is valid provided 
the amplitude of the electric field is sufficiently large that the number of avoided 
crossings which contribute to the diffusion is large. The number of participating avoided 
crossings can be estimated from (2.10) and (2.12): 

N = - e W ~ ~ d + 1 [ F ( e W : o f i w 5 / I ~ ) ] "  (2.17) 

where we have used the estimate e =  The threshold amplitude WO required to 
satisfy the condition N >> 1 therefore decreases as o + 0 because F increases in this limit. 

The diffusion of electrons due to the adiabatic transport effect could be observed 
by detecting a zero-temperature DC conductivity induced by the application of an AC 

electric field. The DC conductivity Z, can be calculated from the spatial diffusion 
constant D using an equation known as the 'zero-temperature Einstein relation', 

& = e 'pD (2.18) 

which is derived in the same way as the usual Einstein relation. 

3. Relation between diffusion and dissipation 

In the previous section it was shown that the oscillating electric field causes a spatial 
diffusion of the electrons. There is a corresponding diffusion of the energy of the 
electrons, with diffusion constant DE: the change in energy of an electron satisfies 

(AE2) = 2DEt  (3.1) 



2620 M Wilkinson 

where A E  is the change in the electron energy in time I ,  and the angular brackets 
denote an average over different electrons. This section estimates the diffusion constant 
DE and shows how this quantity is related to the dissipation of energy. 

The diffusion constant DE can be estimated very simply: irreversibility in the 
dynamics is introduced by avoided crossings at which the transition probability is 
neither very close to unity or to zero. The frequency d N / d t  of these avoided crossings 
is given by (2.10) and (2.12) above. Between these avoided crossings the energy of the 
electron changes by an amount of the order of SE =eL&St, where St=(dN/dr)- '  is 
the typical time interval between these avoided crossings. Modelling the dynamics, in 
energy space, of the electron as a random walk with steps of size 8E occurring at a 
rate d N / d r =  1/81, leads to the estimate 

dN/dl .  (3.2) 

Substituting for d N / d t  using (2.10), (2.6) and (2.12): 

where K 2  is a dimensionless constant. 
Now consider how this diffusion constant relates to the dissipation of energy. 

Assume that the system containing NF electrons is initially in the ground state, with 
all the states up to N, filled, and all the others empty. At a later time I, the total energy 
of the system is 

(3.4) 

where the UJt) are matrix elements of the evolution operator in the adiabatic hasis 
(i.e. UJt) is the amplitude to be in the irh state of the instantaneous Hamiltonian at 
time I, having started in the j t h  state of the Hamiltonian at time 0). An elementary 
calculation shows that, if the summations are approximated by integrals, the change 
in the total energy of the system at time I is 

A&( I )  = - dn n 2 P ( n ,  I )  (3.5) 
2PV 1- -m 

(Wilkinson and Austin 1990, 1991) where V is the volume of the system, and P(n, I )  

is the average probability to make a transition from the ith state to the i+ nth state, 

with the average confined to states near the Fermi energy, i =  NF. If the transitions 
are diffusive, as described above, the distribution P(n, 1 )  is Gaussian, and 

m 

dn n 2 P ( n ,  I )  = 2p2V2DEf (3.7) I-- 
so that the rate of dissipation is given by 

dAET 
df P VDE -= 

where DE is given by (3.3). This result is valid provided the number of avoided crossings, 
given by (2.17). satisfies N >> 1 so that diffusion in energy does occur. 
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4. Perturbative theory for the rate of dissipation 

In this section the AC conductivity is derived via a calculation of the rate of dissipation: 
this result was originally obtained by Mott (1970) using the Kubo-Greenwood formula. 
It will be argued that the total energy which can be absorbed by this mechanism is 
very small, making an experimental observation of the AC conductivity difficult. 

The conductivity, E(w) ,  is simply related to the mean rate of dissipation dAE,/dt: 

where the brackets denote a time average, and V is the volume of the sample. Note 
that the conductivity is only defined if the rate of dissipation is proportional to the 
square of the electric field, and that it is therefore not possible to characterize the rate 
of dissipation obtained in the previous section by a conductivity. 

The probability for making a transition through n states, P( n, t ) ,  is calculated using 
perturbation theory: after N >-) 1 cycles of the applied electric field, only states separated 
by ifio in energy have a significant transition probability: 

P (  n, t )  = (1  -2Rt )S (  n ) +  RtS( n + p V f i w ) +  RfS(  n - p V f i w ) .  (4.2) 

This result remains valid for times short enough that Rt << 1. The transition rate R is 
given by a version of the Fermi golden rule: 

7T 
R =-pVu'%i 

2fi  (4.3) 

where U is the RMS matrix element coupling states near the Fermi energy which differ 
in energy by fiw, 

uz=&z (9 S,(E.-E,)S,.(E,-E,-ho). v p n m t n  ", (4.4) 

In (4.4) &(x)  is a pseudo-delta function of width E ,  and the matrix elements are those 
of the dipole operator a f i / J 8  = e2 in the basis formed by the eigenstates of k 

Mott (1970) pointed out that the average (4.4) is dominated by matrix elements 
coupling pairs of states which are in resonance: two states 14,) and separated by 
a distance L, which is large compared to the localization length 5, have nearly identical 
energies, and the exact eigenstates are linear combinations of these two states. A pair 
of resonant states, occurring at electric field % = %*, is illustrated in figure 1. The matrix 
elements of 2 are clearly of order of magnitude L for these resonant states. The matrix 
elements of i for pairs of states with similar energies are of order of magnitude 6 for 
pairs of states centred within a localization length of each other, and are exponentially 
small, of order of magnitude [exp(-L/[), for other pairs of states which are not in 
resonance. 

Now consider the problem of counting the set of states which are in resonance 
with a given state, and which provide the dominant contribution to (4.4). For a pair 
of states to be in resonance the matrix element AE/2 splitting the degeneracy, given 
by (2.6),  must be approximately equal to hw, 

A E / f i w - l  (4.5) 
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or equivalently AE can differ from fiw by a tolerance SAE which satisfies SAEIAE = 
O( 1) .  The range of separations S L  over which the resonance occur is given by differen- 
tiating (2.6), 

SL=- (SAE/AE =( (4.6) 
so that the resonant states are  contained in a shell of volume SV: 

S v = L"-'c. (4.7) 
The average (4.4) can now be evaluated: 

Substituting (4.8) into (4.3), using (4.2) to evaluate the integral in ( 3 3 ,  and comparing 
with (4.1), the AC conductivity is therefore 

where K, is a dimensionless constant, which is the result obtained by Mott (1970). 
This result is valid for low frequencies satisfying fio << lo. Numerical results verifying 
that this result is a correct evaluation of the Kubo-Greenwood formula in the limit 
w -f 0 have been described by Thouless and Kirkpatrick (1981). 

Although this result is formally correct, it is questionable whether it could easily 
be observed experimentally. The reason for this is that most states are resonantly 
coupled to at most one other state, so that, in an approximation which considers only 
the resonant couplings, the system behaves as a collection of essentially independent 
two-state systems. Each of these two-level systems initially absorbs energy rapidly from 
the perturbing electric field, but then undergoes Rabi oscillations between the upper 
and lower states. The Kubo-Greenwood formula therefore correctly predicts a rapid 
initial absorption of energy by the system due to the resonances, but ignores the fact 
that this mechanism of absorption saturates, with only a few electrons having absorbed 
at most one quantum, hw, of energy. 

The same comment could equally well be made about the application of the Kubo 
formula in other circumstances: it is essentially just a computation of resonant absorp- 
tion using the Fermi golden rule. In most applications of the Kubo formula, however, 
each state is coupled to many others by matrix elements of comparable magnitude. In 
these cases small perturbations due to phonons or electron-electron interactions can 
destroy the phase coherence required for the resonant absorption to saturate, and 
enable further excitation of the system. In the case considered above, where there is 
strong coupiing to at most one other state, there is no possibiiiity for further excitation 
of the system once the upper state is saturated. The weaker couplings to states within 
a localization length would still enable some further absorption of energy, but at a 
much lower rate. 

It is easy to verify that the average number of states in resonance with a given state 
is small using the estimates given above. The width E '  of the delta function of AE - hw 
in (4.4j must satisiy E'<< bo. i h e  average number of states in resonance with a given 
state, SN, is therefore 

(4.10) 
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where the final inequality results from the fact that we are considering frequencies 
small enough that hw is small compared to the local mean level spacing, I o =  (pC")- ' .  

5. Discussion 

This paper has described a novel mechanism for spatial diffusion of electrons and 
dissipation of energy induced by a finite-amplitude AC field. Comparing the rate of 
dissipation due to this mechanism with that computed from the perturbative expression 
for the AC conductivity shows that the adiabatic transport mechanism is dominant in 
the limit w + 0 with the amplitude 8,, held fixed. The adiabatic transport mechanism 
only applies if the number N of avoided crossings is large, but note that N + a7 as 
w + O  with go fixed (see (2.17)). Also, it has been argued that the rate of dissipation 
in the perturbative case is lower than the estimate obtained from (4.1) and (4.9), 
because the energy absorbed by excitation of resonant states soon saturates. 

Although the adiabatic transport effect is non-perturbative, the conditions required 
to reach the threshold intensity are not extreme. Consider a d-dimensional system with 
localization length C =  ah,, where A F  is the Fermi wavelength, and Fermi energy E F .  
The density of states is p = (EFAF)-', and the local mean level spacing is Io= E F / a d .  
ignoring the factor Fd in (2.17), the number of avoided crossings is approximately 
N = a"+'e'%,,AF/ E F .  The frequency w *  below which adiabatic effects become important 
is given by equating hw* to the local mean level spacing, I , .  Taking some typical 
values for experiments on a two-dimensional electron gas, A F =  100 A, EF= 10 meV, 
g o =  10' Vm-', and assuming a = 100, gives N = lo4, with w * / 2 r r  = 0.25 GHz. Thus a 
large number of avoided crossings can be caused by the application of a modest electric 
field, if the localization length is large compared to the atomic length scale. 

It has been observed that, in a very wide class of systems in which the Hamiltonian 
is a periodic function of time, the energy transferred by a time-periodic perturbation 
saturates. This is due to Anderson localization of the eigenstates ofthe Floquet operator, 
expressed in the adiabatic basis: the effect is termed 'localization in energy' (see 
Wilkinson and Austin 1990, and references therein). The system considered here is 
certainly expected to exhibit energy localization, but in most regimes of the model it  
would only affect the dynamics after a very large number of cycles: the exception to 
this is the low-frequency perturbation discussed in section 4. Some results which can 
be used to estimate the localization properties will be described in a future publication 
(Wilkinson and Austin 1991). 

A related mechanism for dissipation involving Landau-Zener transitions has also 
been described in finite-sized systems, in which the statistical properties of the energy 
levels can be described by random matrix models (Wilkinson 1988, 1990). This analysis 
leads to a different dependence on frequency from the case considered here. 

Phonons could also provide the necessary perturbation to cause diffusion of elec- 
trons by the adiabatic transport effect: this is a new mechanism for phonon-induced 
hopping conductivity, and further work is being done to determine the circumstances 
under which such a mechanism could be significant. 
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